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Abstract

When people experience or expect pain, they move differently. Pain-altered movement strategies, collectively described
here as pain-related movement dysfunction (PRMD), may persist well after pain resolves and, ultimately, may result in
altered kinematics and kinetics, future reinjury, and disability. Although PRMD may manifest as abnormal movements that
are often evident in clinical assessment, the underlying mechanisms are complex, engaging sensory-perceptual, cognitive,
psychological, and motor processes. Motor control theories provide a conceptual framework to determine, assess, and target
processes that contribute to normal and abnormal movement and thus are important for physical therapy and rehabilitation
practice. Contemporary understanding of motor control has evolved from reflex-based understanding to a more complex
task-dependent interaction between cognitive and motor systems, each with distinct neuroanatomic substrates. Though
experts have recognized the importance of motor control in the management of painful conditions, there is no comprehensive
framework that explicates the processes engaged in the control of goal-directed actions, particularly in the presence of pain.
This Perspective outlines sensory-perceptual, cognitive, psychological, and motor processes in the contemporary model
of motor control, describing the neural substrates underlying each process and highlighting how pain and anticipation of
pain influence motor control processes and consequently contribute to PRMD. Finally, potential lines of future inquiry—
grounded in the contemporary model of motor control—are outlined to advance understanding and improve the assessment
and treatment of PRMD.

Impact. This Perspective proposes that approaching PRMD from a contemporary motor control perspective will uncover key
mechanisms, identify treatment targets, inform assessments, and innovate treatments across sensory-perceptual, cognitive,
and motor domains, all of which have the potential to improve movement and functional outcomes in patients with painful
conditions.
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Introduction

Pain, a complex experience in itself, is further complicated by
its reciprocal interactions with movement.'= In the presence
or anticipation of pain, people move differently to minimize or
avoid pain-causing or exacerbating movements.®>” During an
acute episode of pain, adaptive movements may be beneficial;
however, these adaptations may persist beyond the duration of
acute pain.®»’ Over the long term, such adaptive movements
often lead to abnormal loading of tissues and reinjury and,
as a result, perpetuate pain.’-'%11 Pain-related movement
dysfunction (PRMD) describes long-term maladaptive motor
behaviors in the presence of chronic pain, anticipation of pain,
or that persist as a habit despite relief from pain. PRMD,
as conceptualized here, is not a symptom of specific painful
conditions but instead learned behaviors that may manifest as
subtle changes in muscle activity to a complete avoidance of
activity and anything in between.'>~'* Abnormal movement
patterns across multiple pain diagnoses have been described
in detail'>>1%; however, scarce attention has been paid to the
nature of the contributing motor control processes, including
their underlying neuroanatomic and physiologic mechanisms,
that contribute to “learning” abnormal movement patterns in
response to pain.

Rehabilitation interventions to remediate PRMD exploit
motor control processes. For example, impairment remedi-
ation (eg, strength training'®-'7), functional training,'® and
neuromuscular facilitation'?~2! predominantly target motor
execution processes crucial to motor control and learning.
However, the development of such interventions arose either
from traditional models of motor control or through clini-
cal exploration and reflection (which we believe are impor-
tant). For example, proprioceptive neuromuscular facilitation
techniques employed to improve movement performance in
patients with chronic low back pain?2-23 have their roots in
the reflex-hierarchical theory.* Historic motor control theo-
ries and interventions grounded in them often overlook the
complex interaction between sensory-perceptual, cognitive,
psychological, and motor systems that we now know are
crucial in the contemporary understanding of motor control.
Though the limitation of historic motor control theories can-
not be denied, movement science, in the last few decades, has
advanced from an early focus on reflexes and reactions at the
level of the spinal cord and brainstem to a more complex
interaction between task, individual, and environment that
engages complex neural networks throughout the nervous
system.>>2¢ Pain effects on movement should be reconsidered
within the contemporary understanding of motor control
to better explain mechanisms of effective interventions and
design more effective interventions.

Over the past decade, interest in motor control concepts
to explain pain-induced changes in movement has surged.
Hodges proposed a theory for adaptation to pain of changes
in multiple levels of the nervous system that lead to redis-
tribution of muscle activity and altered mechanical load.!
More recently, Butera and colleagues proposed a new model
that, for the first time, called for an integration of sensory,
motor, and psychological factors involved in pain process-
ing and motor adaptation.> Although both of these mod-
els have advanced our view to include neural control of
movement in painful conditions, neither of them outlines
the specific sensory-perceptual, cognitive, and motor pro-
cesses that sequentially evolve in distinct neural networks to
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plan, execute, and adapt goal-directed actions. Contempo-
rary understanding of motor control includes a set of rela-
tively well-defined sensory-perceptual, cognitive, psychologi-
cal, and motor processes, each with putative neural substrates,
and underlies specific aspects of goal-directed movements,
including action selection, planning, execution, and adapta-
tion. With a set of delineated processes at hand, we can
more systematically study the effects of pain on goal-directed
actions, test and design rehabilitation interventions grounded
in contemporary theory, and, consequently, improve patient
outcomes.

This Perspective describes PRMD through the lens of motor
control theories to provide rehabilitation clinicians and sci-
entists with a contemporary account of motor control pro-
cesses and putative neuroanatomical substrates that imple-
ment complex adaptive motor behaviors. First, we distinguish
between nociception and pain as they relate to the control of
movement. We then present a novel framework, the contem-
porary distributed model of motor control, that is grounded
in the current understanding of sensory-perceptual, cognitive,
and motor processes,”’ 30 and corresponding neuroanatomic
substrates that support goal-directed actions. Throughout
the paper, we summarize recent pain research to elucidate
how pain and/or anticipation of pain affects the neurobehav-
ioral processes within the contemporary distributed model of
motor control. To conclude, we recommend future research
directions that may be necessary to better understand, char-
acterize, and treat PRMD. Our global position is that concep-
tualizing the effects of pain using a systematic theory-driven
lens of contemporary motor control will help outline neural
and behavioral mechanisms that contribute to pain-altered
movement patterns, shed light on individual differences in
motor adaptations to pain, identify appropriate rehabilitation
treatment targets, and improve clinical outcomes.

Nociception and Pain: Transmission and
Processing

Nociception and pain, though related, are distinct phenom-
ena.' Nociception refers to the peripheral and central trans-
mission and processing of sensory information generated by
the activation of nociceptors.!* In contrast, pain is character-
ized as an unpleasant sensory and emotional experience that
may or may not be associated with actual or potential tissue
damage.'#31:32 Sensory information from free nerve end-
ings is relayed by the spinothalamic pathway to the primary
somatosensory cortex for sensation and localization of noci-
ception.?? In addition to the spinothalamic pathway, nocicep-
tive information is also relayed by the spino-reticulothalamic,
spinomesencephalic, and spino-parabrachial-amygdala path-
ways to multiple cortical and subcortical areas such as the
secondary somatosensory cortex, reticular formation, amyg-
dala, insula, anterior cingulate cortex, and prefrontal cor-
tex.>1:33 Processing at each of the cortical and subcortical lev-
els, and subsequent interaction between nociceptive substrates
and those that subserve emotions, cognition, and memory,
together occasion the perception of pain. Nociception, then,
describes sensation arising from activation of nociceptors,
whereas pain describes a subjective perception modulated by
patient-specific factors (eg, one’s physiological and psycholog-
ical state4).
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The distinction between nociception and pain is relevant
for the control of movement because each may have dis-
tinct, yet interacting influences on different levels of the
neuraxis. Nociceptive pathways may preferentially interact
with spinal segmental and multisegmental levels to control
reflexive components of movement.>*-3¢ In contrast, pain may
predominantly modulate motor control by influencing the
higher-order cognitive, perceptual, and motor areas of the
brain such as the prefrontal and motor cortices.>! Although it
is difficult to clearly delineate the precise neural border for the
influence of pain and nociception, it is crucial to understand
the influence of nociception and pain on the motor con-
trol processes and neural substrates involved in goal-directed
actions. In the next section, we describe the contemporary
model of motor control, delineate distinct sensory-perceptual,
cognitive, psychological, and motor processes that contribute
to goal-directed actions, and discuss the implications of pain
on these processes.

Contemporary Model of Motor Control and
Adaptation

Broadly speaking, motor control involves 2 mechanisms: feed-
forward and feedback control.3”>38 Feedforward (or antic-
ipatory) control occurs prior to action onset and includes
selection of task-goal, action, and planning parameters.®
For example, when Lebron James prepares to shoot a free
throw (task-goal), he selects the most appropriate action and
assigns specific parameters (ie, force, timing) to that action—
all before executing it. If feedforward control is impaired, a
patient may demonstrate impaired action selection, or defi-
cient timing and/or amplitude of muscle activation, and slower
motor performance.’”>3? Feedback control, in contrast, uses
sensory information about the executed action to correct
the ongoing movements (online correction) and update the
feedforward controller for future actions.*’ Reliance on sen-
sory feedback and consequent online correction requires pro-
cessing at spinal reflexive and supraspinal pathways.*! Such
continual response takes longer processing times and is mainly
possible for slower actions that rely on feedback about the
effect of action on ongoing motor performance.’®*> Impaired
feedback processes may reflexively modulate muscle activa-
tion, minimize correction of action over its course, or alter
subsequent movements by changing the nature of feedforward
control.?®

The Table out lines the serial processes in motor control
of goal-directed actions, underlying systems and neural sub-
strates, and behavioral effects of pain on each of the processes.
Figure 1 illustrates pain and nociception-related deficits in dis-
tinct sensory-perceptual, cognitive, psychological, and motor
systems that underlie the behavioral impairments observed for
each process in the contemporary model of motor control.

Sensing and Perception

Goal-directed actions rely on our ability to quickly gather
information about the environment and task through multiple
sensory systems. The exteroceptive information about the task
and environment is integrated with interoceptive information
(eg, proprioception) and the internal representation of body
anthropometrics (eg, body schema) to help plan upcoming
actions.’ Primary sensory cortices (somatosensory, visual,
auditory) and secondary sensory cortices implement localiza-
tion and perception of sensory information. Unimodal and

multimodal association cortices (parietal association cortex)
help integrate varied sensory inputs to allow for recognition
and planning necessary for action.*>>** For example, a basket-
ball player needs to gather and integrate visual information
about the distance from the hoop, auditory information of
play calls from coaches, and proprioceptive information about
his or her body to decide about a jump shot attempt.

Pain Effects on Sensing and Perception

Musculoskeletal injury and surgeries that activate nocicep-
tors often impair mechanoreceptor function and transmission,
further blunting proprioception.*>=*% Chronic pain is also
associated with reorganization of sensory cortices,*’>>" which
likely interferes with discrimination, processing, and integra-
tion of tactile’'32 and proprioceptive’3~¢ sensations and, in
severe cases, alters body schema and kinesthesia.’”>>® Further,
processing of painful stimuli (ie, nociception) may also be
altered in primary somatosensory and association cortex that
may increase pain sensitivity.”” Impaired sensory processing
paired with altered body schema and kinesthesia contributes
to deficits in motor coordination®® and control.®!-62

Assessment of sensations, discriminatory sensations in par-
ticular, may help to identify abnormal sensory processing
and integration. Interventions such as sensory discrimination
training have yielded less consistent evidence in improving
pain perception in painful conditions.?3-¢4 Similarly, visual
imagery, mirror therapy, and virtual reality have been suc-
cessfully used for pain relief>~%%; however, relatively fewer
studies®®:%” have examined the effects of sensory-perceptual
training on motor performance.

Goal Selection and Intent

Accomplishing a purposeful movement requires selecting a
task-goal consistent with intent and aimed toward maximal
success.”’” For example, a basketball player, when surveying
the defense, may choose to pass the ball to an open team-
mate or try to score. Successful choice of task-goal requires
attentive observation of environment and identification of the
salient, meaningful goals that will maximize success. Multiple
higher-order cognitive processes such as attention, motivation,
and decision-making converge to support goal selection that
complies with the rules of the environment and task.>”>70:71
Besides cognitive processes, psychological states such as emo-
tional response and pain catastrophizing, also influence goal
selection.”? Prefrontal and parietal-occipital association cor-
tices, including their interactions with the anterior cingulate
cortex (limbic system) and the striatum, implement task-goals
based on the performer’s intent and values.”!>73-73

Pain Effects on Intent and Goal Selection

Pain and/or anticipation of pain influence higher-order
cognitive processes of attention,’® motivation’” and decision-
making,’®7? and psychological states, thus affecting the
selection of appropriate action goals. In the cognitive domain,
pain may redirect individuals’ attentional resources toward
an internal focus (ie, focus on joint or joint movement),30>8!
thus impairing their ability to attend to environmental
cues for selection of task-goals. Pain or anticipation of
pain, in noncompetitive or threatening environments, may
bias individual’s motivation toward minimizing pain rather
than toward selection of the most appropriate goal.$2-83
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Table. Motor Control Processes, Underlying Neuroanatomical Basis, and Effects of Pain?

Pain and Motor Control

Motor Control Process

Systems Engaged
(Sensory-perceptual, Cognitive,
Psychological and Motor)

Neuroanatomical Basis

Effects of Pain on Motor Behavior

Sensing and perception

Goal selection and intent

Action selection

Action planning

Action execution

Feedback (internal
teedback) processing

Knowledge of results
processing

Sensory-perception: relevant task
and environmental stimuli
Cognitive: attention, arousal,
motivation, effort

Psychological: emotional well-being,
mood states

Cognitive: motivation,
reinforcement-based action selection
Psychological: mood influences vigor

Cognitive: feedforward planning of
timing, sequencing
Motor: interactive torques

Motor: force encoding and muscle
synergies

Sensory-perception: feedback-based
online correction

Cognitive: motivational systems,
error-based systems, reinforcement
systems

Primary and secondary sensory,
sensory association areas
Prefrontal, parietal, occipital
association cortexes, limbic system

Premotor cortex, basal ganglia
circuits (motor, executive, and
emotional)

Premotor cortex, cerebellum,
parietal cortex

Motor cortex

Dorsal columns, Anterolateral
system, primary and association
sensory cortex, cerebellum
Visual-auditory systems, basal
ganglia, cerebellum

Deficient integration of tactile,
proprioceptive, and visual sensations
Selected goal may not be most
effective for task success; pain may
influence decision making and
attention

Inefficient actions may be selected.
Pain or fear of pain during most
efficient action may act as
“punishment,” minimizing
probability of choosing it

Pain may lead to abnormal
sequencing and timing of interactive
torques, leading to compensatory
movements

Slower inefficient movements with
poor kinematics; deficits in force
production persist during task
performance

Inefficient movement correction
and/or response to sensory feedback

Error and reinforcement are
influenced by KR

“KR = knowledge of results.

Motor control
processes

Pain-related deficits that impact motor control processes

 E—
Sensing and
Perception

Nociception-
related altered
tactile and
proprioceptive
processing;
Pain-related
altered visual
processing,
impaired body
schema and

FEEDFORWARD
MECHANISMS

A

FEEDBACK
MECHANISMS

——

Setting task
goals and

intent Action

Selection

kinesthesia

Action

D —

—
Effects of
action (KR)

Sensory
Feedback

Cognitive:Impaired e Action
attentional focus, Execution
motivation, : Cognitive: impaired
executive function; decision making,
Psychological. deficient Altered movement
Emotional [esponse | reinforcement; kinematics/kinetics
and fear of pain Psychological: fear|  |learned in the Inhibition of spinal
influcence task avoidance impair presence of pain; networks alteeed
goals action selection Compensatory cortical drive.

= actions persist fewer active !

due to adapted

forward model motor cortical

plasticity

synergies, altered

Nociception-related
reflex inhibition of
spinal networks,
aberrent processing
of non-nociceptive

input

Pain-related

__—| impaired sensory
integration, altered
somatosensory
topography and
plasticity

Figure 1. A contemporary model of motor control and the effects of pain on each of the processes: sensory-perceptual, cognitive, psychological, and
motor processes that contribute to control and adaptation of goal-directed actions. Sensory systems help identify salient features of task and
environment. Selection of goal, action, and planning of actions predominantly rely on feedforward mechanisms engaged prior to task execution.
Feedback from somatosensory systems and effects of action on task-goals (ie, knowledge of results) influence subsequent actions (red arrows). In the
case of slower actions, online feedback can be used to correct an ongoing movement (blue arrow).
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Studies indicate that cognitive functions central to successful
goal selection, such as task-switching, multi-tasking,%* and
working memory,3%>8¢ are impaired in the presence of pain. In
the psychological domain, behaviors such as fear avoidance,
catastrophizing, and poor self-efficacy may also influence goal
selection 8789

Assessing motivation and executive function may help iden-
tify factors that interfere with selection of appropriate goals
for action. Further, identifying fear-avoidant beliefs and catas-
trophizing tendencies will not only provide insights into motor
behaviors but also help direct appropriate psychological treat-
ment targets.” Behavioral interventions that train attentional
focus toward external task-relevant features for successful
performance during practice may enhance motivation and
curtail fear and anxiety.? Incorporating multi-tasking and
decision-making”"-*? to select appropriate goals may opti-
mize, challenge, and target cognitive processes necessary for
goal selection.

Action Selection

Once a task-goal is identified, the individual must select the
most appropriate action from a range of potential alterna-
tives.”> For example, to pass a basketball to a teammate (task-
goal) in a noisy court (environment), how does a player (indi-
vidual) choose a bounce pass over a chest pass or overhead
pass? Action selection relies on knowledge of success prob-
ability of possible actions, developed with practice or expe-
rience through reinforcement learning.”* In reinforcement
learning, selection of a given action is modified by the prob-
ability of it receiving a binary (success or fail) form of feed-
back.”> Actions with a high probability of reward are retained
and executed with vigor; conversely, those with failure or pun-
ishment are avoided.”®=%% Reciprocal interactions between the
prefrontal, premotor, and parietal cortices and basal ganglia
implement reinforcement learning, with dopamine playing an
important role in assigning the reward value to successful
actions.””~193 In particular, within basal ganglia, preferen-
tial activation of the caudate nucleus during early practice
shifts to the putamen as learning progresses and skills become
automatic.!%* Recent evidence suggests that neural networks
subserving emotion processing (eg, amygdala, anterior cingu-
late cortex, and hippocampus) interact with the dopaminergic
networks to influence action selection.!?’

Pain Effects on Action Selection

Acute and chronic pain influence cognitive control of motor
behavior through interacting yet potentially distinct mecha-
nisms. Acute, injury-induced pain often leads to immediate
movement avoidance'?®197 to minimize the possibility of
pain. Avoidance is thought to be implemented by modulation
of cognitive control due to the fear of pain,”>!%% although
reflex inhibition may also account for minimizing move-
ment.'? As pain becomes chronic, neuroplastic changes in
cognitive and emotional brain circuits lead to increased fear-
avoidance beliefs, impaired cognitive control, and reduced
decision-making capability.'’=!"1!  Work by Baliki and
colleageus, for example, evidenced in individuals with chronic
pain decreased connectivity between the medial prefrontal
cortex (MPFC) and the parietal lobe as well as increased
connectivity between the MPFC and insula.'’> MPFC and
parietal lobe connections are crucial to the executive control

of action selection”374113; therefore, decreased connectivity
may contribute to deficits in action selection and plan-
ning.”%>”? Further, greater connectivity within the emotional
circuitry, including the insula, may interfere with executive
functioning and decision-making for action selection.'#112

At the level of action selection, pain accompanying a spe-
cific action may act as a “punishment,” suppressing the like-
lihood of selecting a painful action by reducing its dopamin-
ergic “value.”'93114 Subsequently, other feasible actions that
allow task performance without pain may be more rewarding
and learned through reinforcement learning.!'> There exists
a clear interaction between the relative level of pain and the
salience of task-goals in action selection”” such that actions
that serve the dual role of avoiding or minimizing pain and
accomplishing task-goals are likely to be reinforced and habit-
uated. Further research is needed to delineate neural networks
that implement efficient and successful action selection with
minimization of pain for accomplishment of task-goals.

Clinically, assessing fear-avoidant behaviors and movement
analyses across a range of activities will provide insights
into which actions are predominantly selected and which
are avoided. Psychological strategies to target pain-related
psychological deficits such as fear avoidance (eg, pain neuro-
science education, cognitive behavioral therapy, or exposure
therapy) are critical for promoting activity and behaviors nec-
essary for best patient outcomes.”?>106:11¢ Besides pain relief,
interventions that involve exploration of different movement
strategies (eg, random-order practice) while interacting with
complex environments provide richer opportunity to practice
action selection."!” Experiencing success in salient activities
through pain-free, yet kinematically efficient and safe actions
during task practice is more likely to reinforce desirable
actions.! 18117

Action Planning

Once an action is selected, motor commands are planned to
specify movement parameters (ie, timing and force). Specifi-
cation of movement parameters is well-conceptualized using
the influential theoretical construct of an internal model.>%-3”
Internal models explain how neural systems enable planning
of motor commands to accomplish task-goals, predict the
consequences of the preplanned motor commands, and update
future commands. Two distinct types of internal models have
been described: inverse internal models and forward internal
models.>?>37

Inverse models help to calculate the necessary motor
commands to move the limb from its current state to a
future desired state oriented toward the task-goal®” (Fig. 2).
To achieve the future desired state of the limb, the desired
action trajectory is transformed to estimate joint torques,
timing, and muscle activations needed to move the joints.
Such transformation requires information about the current
state of the motor system and an inverse model that specifies
the motor command required (eg, how much force is needed to
throw a ball) to accomplish the desired end-state of the motor
system aimed toward a task-goal (eg, distance of the base
from oneself). Feedforward specification of motor commands
using the inverse internal model is implemented by neural
networks that engage the association areas in the posterior
parietal cortex, dorsal premotor cortex, cerebellum, supple-
mentary motor area, and cingulate motor area.'20=127 These
sensory-motor association networks help to plan motor
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Figure 2. Inverse and forward models in feedforward control needed for action planning. Inverse models specify motor commands based on current
status and the future desired state of the musculoskeletal system. Forward models help predict the sensory consequences (ie, the feel of movement as
well as effects of the motor command on action goals). Pain influences both inverse and forward internal model due to changes in sensory prediction

error (pink lightning bolts).

commands that, once relayed to the primary motor cortex,
activate spinal motor networks subserving action execution.

Forward models predict the sensory consequences of the
motor command specified by the inverse model.3?>128 As
motor commands are relayed to target muscles, an efference
copy is relayed to the forward model.'2%:130 Forward models
use the current state of the motor system and motor com-
mand to generate a predicted sensory consequence of the
motor command prior to action execution.>® As the action is
executed, the forward model compares the predicted sensory
consequence and actual sensory consequence to compute the
sensory prediction error signal. Sensory prediction errors may
arise from internal factors (eg, motor noise, impaired sensory
input, or altered sensory input such as pain) or external factors
(eg, environmental perturbation). The prediction error is then
used to update the inverse and forward models for improving
subsequent movements. Substantial evidence indicates that the
cerebellum plays an important role in adaptation using the
forward model.*1>128

Pain Effects on Action Planning

Pain influences cognitive-motor processes that support
inverse and forward internal models for adaptation of goal-
directed actions.?3-131-133 Pain may interfere with accurate
sensory prediction of motor commands via the forward
internal model, thus yielding a sensory prediction error
signal.!31:134 For example, as a patient without shoulder
pathology generates a motor command to reach to an
overhead shelf, the predicted sensory consequence during
is a pain-free reach. However, in the presence of shoulder
pathology, the actual sensory consequence is a painful
reaching action. Mismatches between the predicted and actual
sensory consequence in those with shoulder pathology may
drive adaptive updates to the inverse model.'?® The resultant
inverse model may thereafter specify more forces at the
scapulothoracic joint while minimizing the forces applied
at the glenohumeral joint, resulting in a new compensatory,
pain-free reaching action. Thus, pain-driven updates to the
inverse model may underlie compensatory actions observed
in individuals with pain.

When pain-free compensatory action is repeated to accom-
plish a task-goal, the forward model also undergoes updates: it
“learns” that the newly adopted compensatory action accom-
plishes the task-goal without pain—a rewarding outcome
more likely to be reinforced. Once learned, compensatory
action may persist even after the pathology is treated and pain

subsides at the periphery because the updated inverse and for-
ward models continue to support compensatory motor adap-
tations. Multiple clinical reports indicate that despite reduc-
tion in pain, decreases in inflammation, and improvements in
range of motion and strength, patients continue to compensate
with actions that, once adaptive and protective in nature,
are unnecessary, even harmful if maintained.®>%-135-138 For
instance, adaptive movements that place greater loads on the
non-operated limb after total knee arthroplasty may have con-
sequences for the development of degenerative osteoarthri-
tis of the non-operated limb.'%>!'! The cerebellum, widely
implicated in forward and inverse models, has recently been
further implicated in the perception and processing of pain in
relation to movement.'3? For instance, work by Ruscheweyh
and colleagues found that individuals with cerebellar damage
perceived increased pain and reduced analgesia compared
with pain-free controls.!*? In a different study, parts of the
lateral cerebellum were activated with an experimental pain
stimulus delivered during a grip-force production task,!3’
putatively suggesting a cerebellar substrate for multimodal
(pain and movement planning) processing that underlies pain-
related adaptations in motor control. The precise behavioral
relevance of this overlap remains open to further research as
does the role of cerebellar circuits in pain-related movement
adaptation.

Compensatory actions are likely to persist if the forward
model is not retrained through new prediction errors or if
more stereotypic actions are not trained through reinforce-
ment learning. Assessing the discrepancy between capacity
and actual performance through movement analyses is critical
to determine the nature of compensatory behavior. Interven-
tions focused on augmenting capacity (eg, pain-free range of
motion) and retraining fast, successful movements through
systematic manipulations of task, environment, and feedback
are likely to benefit action planning. Compensatory actions
can be remediated in 1 of 2 ways: (1) through high-intensity,
high-dose task practice that promotes successful and pain-
free movement patterns with better kinematics and kinet-
ics through reinforcement!*'; or (2) through education and
graded exposure to pain during movements to encourage
pain modulation with repetitive actions.'*> During graded
exposure in the presence of pain, the prediction of pain during
movement likely allows the forward model to predict some
pain while continuing practice of desired movement patterns
and activities. Use of technology in both strategies to improve
to manipulate reinforcement, or error, provides external focus,
and a frame of reference for kinematically better actions may
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prove helpful. In basic behavioral studies, use of virtual reality
to improve motor performance with practice has yielded suc-
cess in healthy individuals'*3~145 and individuals with ACL
reconstruction.'#®

Action Execution

The motor plan for the selected action is finally relayed to the
action execution system, which includes the primary motor
cortex, corticospinal pathway, and the spinal motor neuron
pool. The motor cortex generates movement-specific signals
and transmits them to the brainstem, spinal cord circuits,
motor neurons, and, finally, the muscles. Multiple lines of
evidence indicate that the motor cortex may encode multi-
ple features of movement such as kinematics'4’~191 (spatial
and motion aspects), kinetics’2:153 (muscles and forces),
complex posture primitives,'>*'55 and/or cooperative muscle
synergies.'°~158 A muscle synergy, for example, constitutes
multiple muscles activated in a specified order and ampli-
tude; 1 muscle can be a part of different synergies. Each
synergy, when recruited, results in a coordinated activation
of constituent muscles with specific relative amplitudes and
timings.'>” Neurophysiologic studies of primate and human
motor cortex provide supplementary support to the notion
of muscle synergies in the control of goal-directed action.!¢?
Massé-Alarie and colleagues used transcranial magnetic stim-
ulation (TMS) to test the overlap between motor cortical
representations of the forearm muscles at rest and during
different tasks.'®! They observed that a single muscle had
multiple representations. In addition, each representation was
differentially more active during distinct motor tasks. Fur-
ther, synergistic muscles shared more cortical sites with each
other than with antagonist muscles. Together, their findings
indicate that motor cortical representations may plausibly
encode different muscle synergies with task-specific activa-
tion profiles. Thus, motor execution may be accomplished
by activation and combination of different synergies in a
task-specific manner. Finally, motor cortical drive is certainly
crucial to activate the spinal motor neurons and muscles
needed to produce volitional actions. Motor cortical drive to
generate muscle force is strongly influenced by the sensory-
perceptual system and cognitive-psychological processes such
as motivation and fear.'°27166 Qnce activated, muscles act
on the mechanical linkages to produce action to accomplish
task-goals.

Pain Effects on Execution

Pain modifies the neural mechanisms underlying action exe-
cution. During bouts of acute muscle pain, studies consis-
tently evidence reduced activity in the sensory and motor
cortices (characterized by a range of functional imaging and
neurostimulation techniques such as functional magnetic res-
onance imaging (fMRI), electroencephalography (EEG), and
transcranial magnetic stimulation (TMS),'¢7:168 which may
reflect a protective mechanism to minimize movement. In
contrast, chronic injury and pain have been associated with
changes in cortical representations of muscles and increases
in corticospinal excitability.!®”=172 A recent meta-analysis
suggests that increases in corticospinal excitability are accom-
panied and likely mediated by a reduction in GABA-mediated
intracortical inhibition.!”3 Long-term motor cortical changes
likely contribute to volitional activation deficits!’#~177 that
persist even after pain relief and rehabilitation.'”8:17? In addi-
tion to motor cortical changes, impaired spinal mechanisms

(eg, reduced presynaptic inhibition and recurrent inhibition)
and psychological states (eg, fear of pain) may also con-
tribute to voluntary activation deficits in chronic pain con-
ditions.?>>189 Despite reported changes in cortical and spinal
activity, the influences of task, environment, and muscle speci-
ficity need further research to improve generalizability.

Chronic pain may further suppress certain muscle synergies
and/or delay their activation, thus leading to abnormal and
inefficient goal-directed movements (Fig. 3). For example,
compared with pain-free controls, individuals with lateral
epicondylalgia were found to demonstrate fewer synergies
that were activated with longer delays when generating sub-
maximal grip force.'81:182 A lesser level of synergy activation
was associated with lower pressure pain threshold in these
patients. Similar alterations in muscle synergies have been
described in experimental pain models'®3:184 and in patients
with other painful conditions.'®> Muscle synergy deficits are
often accompanied by neural changes. Using TMS, Schabrun
and colleagues'”! mapped the motor cortical representations
of the extensor carpi radialis brevis (ECRB) and extensor dig-
itorum (ED) in individuals with chronic lateral epicondylitis
and pain-free controls (Fig. 4). Controls demonstrated multi-
ple motor representations for ED and ECRB in the motor cor-
tex. In contrast, individuals with lateral epicondylitis demon-
strated significant reduction in the number of “peaks” or
motor cortical representations of ED and ECRB. Findings fur-
ther indicated greater overlap between the contracted repre-
sentations of the muscles in patients with lateral epicondylitis.
Altered and smaller motor cortical representations align with
findings, highlighted earlier, showing fewer synergies and thus
may represent the physiological signature of pain-induced
changes in the organization of muscle synergies.

Greater overlap within the reduced cortical muscle rep-
resentations and subsequent fewer available synergies may
help explain poor motor control for skilled hand function
observed in patients with chronic lateral epicondylitis and
other painful conditions.!”!>!8¢ First, decreased and delayed
activation of synergies may interfere with the speed and
accuracy of task performance. Second, fewer available syn-
ergies may constrain or limit functional task performance
to abnormal, often stereotypical movements. Motor deficits
are often augmented during repetitive tasks when fatigue
sets in and additional synergies are needed to maintain task
performance.!”! Deficits in activation of additional synergies
during repetitive actions (eg, tennis) may further impair task
performance, increase tissue overload on existing synergies,
or both.

Assessment of strength and power deficits, fatigue, and
motor performance provide an indicator of action execution
deficits. Interventions that target neuromuscular mechanisms
underlying force production may improve strength/power.
Remediating motor deficits that arise from faulty synergies
may require novel interventions that go beyond traditional
strength training. For example, training of multiple movement
combinations (synergies), and incorporating these synergies
into functional tasks, would likely improve motor control.!8”
Providing opportunities to practice varying movement pat-
terns (practice variability) with verbal feedback and cueing
may allow the patient to experience a range of actions with-
out compensation. Incorporating technological advances such
as virtual reality may reinforce efficient movements with
better kinematics and kinetics in more motivating and varied
environments.
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Figure 3. The influence of pain on motor execution and motor synergies in particular. (A) Motor commands activate task-specific synergies or motor
modules. Each synergy consists of multiple muscles working together in a coordinated fashion; 1 muscle can be a part of multiple synergies. (B)
Presence of pain may inhibit specific muscle synergies and contribute to movement dysfunction.

Extensor digitorum

Lateral
epicondylalgia

Pain-free
control

~/

Extensor carpiradialis brevis

Figure 4. Adapted from Schabrun and colleagues. A 3-dimensional motor cortical representation of extensor digitorum and extensor carpi radialis brevis
in a representative pain-free control (lower row) and an individual with chronic lateral epicondylitis (upper row) obtained using TMS. “Peaks” were
identified if Motor Evoked Potentials (MEPs) were >50% of maximum map amplitude and at least 5% greater than MEP amplitude of 7 of 8 surrounding
grid points. A peak represents the area of the muscle that is more responsive to TMS activation. A reduced number of discrete peaks in cortical
representation is evident in the participant with lateral epicondylitis compared with the pain-free control. Group data (not shown here) supported this
representative individual data from Schabrun et al'’/!. TMS = transcranial magnetic stimulation.

Feedback Control

Actual sensory consequences of the executed action are
relayed to the nervous system through multiple sensory
systems (eg, visual, somatosensory, etc). When actions are
slow, online feedback can be used to modify ongoing
actions.”® With fast actions (eg, throwing), the use of online
feedback to modify an ongoing movement is inefficient due
to long delays in sensory acquisition and processing. Instead,
somatosensory feedback from the musculoskeletal system,
together with the effects of action on task-goals (knowledge

of results), update the inverse and forward models.> Updated
inverse and forward models help plan and adapt subsequent
actions to maximize success. Importantly, motor cortex
excitability and plasticity are heavily influenced by sensory
feedback.'88:187

Pain Effects on Feedback Control

Nociceptive inputs modulate feedback-dependent reflexive
spinal networks in unique ways to alter the motor neuron
excitability, agonist—antagonist interaction, and processing of
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1. What are commonly observed deficits in sensory-perceptual, cognitive,
psychological and motor systems for motor control that contribute to complex
PRMD?

- What is the time course of the deficits that contribute to PRMD?

- Are the deficits in motor control processes and the time course of their emergence
different across diagnoses?

- How are deficits in sensory-perceptual, cognitive, psychological and motor
systems related to individual differences in patients with PRMD?

2. What neural and behavioral mechanisms contribute to deficits in motor control
processes in the presence of pain?

- What are the relative contributions of spinal and supraspinal networks in PRMD?

- How do neural networks associated with altered motor control differ in localized
pain (eg, lateral epicondylitis) compared to generalized pain syndromes (eg,
fiboromyalgia)?

3. Which assessment strategies (sensory-perceptual, cognitive, psychological
and motor tests, questionnaires, kinematic motion capture) can reliably and
objectively detect motor control deficits in PRMD in a valid manner?

- Which of the assessments help predict long-term changes in motor control,
performance, and re-injury?

- Are the assessments sensitive enough to demonstrate clinically meaningful
change with treatment?

4. What are critical ingredients of treatment strategies that will help remediate the
motor control deficits that contribute to PRMD?

- Can sensory-perceptual retraining strategies that help reduce pain remediate
abnormal movements in PRMD?

- Can action selection processes, including inverse and forward models, be
retrained in the presence of pain to help normalize movements?

- What are the best strategies to train feedforward and feedback control in
individuals with pain?

- What are optimal parameters (eg, intensity, dose, nature of feedback)
of clinical interventions targeted at improving motor control in individuals with
pain?

- How can technological advances such as virtual reality and non-invasive brain
stimulation) be used to remediate the deficits in sensory-perceptual, cognitive and
psychological processes contributing to PRMD?

5. How do we select patients to appropriately target our interventions to maximize
efficacy and efficiency of treatments?

- What are potential modulating variables (eg, personality type, self-efficacy) that
may interact with pain perception and motor control of goal-directed movements?

- How do psycho-social factors impact different steps in action selection, planning,
and execution?

Figure 5. Potential future research directions along the translational pipeline. PRMD = pain-related movement dysfunction.

non-nociceptive stimuli.'2:199-193 These physiologic changes
may underlie volitional activation deficits, delayed activa-
tion of muscle responses, and abnormal co-activation around
painful joints. Impaired sensory processing, integration, and
motivation may significantly interfere with the use of error
and reinforcement feedback to update goal and action selec-
tion, and motor planning. Finally, sensorimotor somatotopy
is impaired in individuals with chronic pain, potentially lead-

ing to shunting of sensations to abnormal movement pat-
teI‘I’IS.194_I96

Determining how manipulation of augmented feedback
(eg, visual feedback) and/or instructions to correct move-
ment patterns influences movement kinematics may provide
some insights for potential ways to improve motor control.
Disrupting visual feedback using stroboscopic glasses led to
alterations in vertical jump-landing kinematics in individuals
with ACL reconstruction.'”” Compared with verbal instruc-
tions alone, visual feedback improved movement kinematics
during side-step cutting in healthy athletes.!”® Visual feedback
has also been used to reduce pain perception in individuals
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with chronic low back pain'®?:209; however, the effects on
movement performance remain to be tested.

Outstanding Questions, Future Directions, and
Conclusion

Understanding PRMD is a complex, yet imperative under-
taking for advancing evidence-based treatments. Experts have
long recognized the importance of motor control in the man-
agement of musculoskeletal disorders'->-201:202; a4 compre-
hensive framework that outlines sensory-perceptual, cogni-
tive, and motor systems will help both research and clini-
cal efforts to treat PRMD. Both nociception and pain may
influence goal-directed actions at multiple levels of the neu-
raxis. The complexity of each level, interactions among levels,
and changes to the levels over time render it challenging,
if not impossible, to isolate a single mechanistic explana-
tion of PRMD. Given its layered complexity, investigation of
PRMD demands a systematic approach along a continuum
of research—from basic mechanistic investigations to applied
clinical intervention studies—to expose key mechanisms, iden-
tify appropriate treatment targets, shed light on individual dif-
ferences, and guide development of evidence-based outcomes
and interventions. The contemporary distributed model of
motor control is an attractive framework through which to
study pain and its effects on the cognitive, sensory-perceptual,
and motor processes, and their respective underlying neural
substrates, that contribute to PRMD. To that end, Figure 5
outlines potential future research directions to help address
outstanding questions along the translational pipeline—from
a theoretical contemporary model to effective clinical inter-
ventions.

Rehabilitation of movement in the presence of pain or
after pain relief requires comprehensive assessment and
treatment of pain as well as related movement dysfunction.
Although movement reeducation and practice are increasingly
incorporated in physical therapy and other rehabilitation
interventions of PRMD,'*1203 identifying deficient sensory-
perceptual, cognitive, psychological, and motor processes
contributing to abnormal movement will allow targeted
innovative interventions to remediate those processes. For
example, both fear of pain and impaired sensory processing
and integration may impair movement performance. Fear of
pain may be targeted through pain neuroscience education
and graded, structured task practice that provides opportu-
nities for action selection and planning. In contrast, impaired
sensory processing may be optimally targeted through
sensory reeducation and virtual reality interventions that take
advantage of multi-sensory integration in the context of task
practice. We suggest that assessment and treatment of sensory-
perceptual, cognitive, and motor processes contributing to
the control of goal-directed actions will lead to individualized
treatments for better patient outcomes. The contemporary
motor control model thus provides a framework to advance
research and guide clinical practice to help treat individuals
with PRMD.
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